TUTCH IL, Pry 3.7] (gl. packet the Frider THETO WRIF (gl. packet the Frider 10 Flack ACJ n. caperal of 7-monty No Flack of 7-monty No Flack of Topologinen (i) (digle packet nation, R) x GA (t/Mas) a:= Im {t/Mas} a -x (t/Mas) A - by (t/Front) x GA (t/Mas) a:= Im {t/Mas} a -x (t/Mas) A - by (t/Front) w/ (t/Fas) a - t/Front) A No (t/Front) A - t/Front) A - t/Front A No (t/Front) A - t/Front) A - t/Front A - t/Front) A No (t/Front) A - t/Front) A - t/Front A - t/Front) A - t/Front) A No (t/Front) A - t/Front) A - t/Front A - t/Front) A - t/

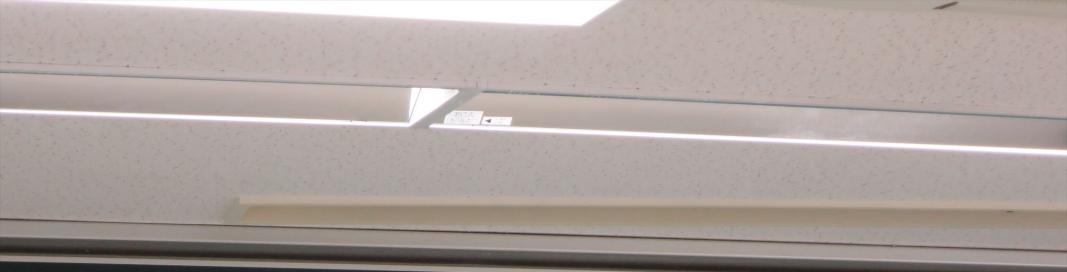
(ii) I might packt Politic fractide A $(I = (I = M_{MOD})_{K}$ $A \in A$ $(I = (I = M_{MOD})_{K}$ $K = (I = I_{M} (A + 7_{2}))$ $K = (I = I_{M} (A + 7_$ all -, (TFMOD)x

(III) I real of St. LGP-Fide) D R'd 1 TJPT ~ 7-po-utp ~ 7-pro-utgo mon. (unpostedion (TFm.)); (TFm.)); (Unpostedion (TFm.)); (TFm.)); Print KTOMATE C(GP(THTOMAT))

 $f(t) = (t e_{iGP}^{t}, Pre(te_{iGP}^{t}) - ik, t = t = 1, t = loc, t = 1, t = loc, t = 1, t$ Fred (tip TOred IF) "("-" global rentation

The loc. 21. No loc. The phane here LET Stalling | Toph = + FLAP la (+7@R), -, (+7.05), mes , trac ideal A

(1) (real's product ambeddige & moreal's gl. Erd) CLGp (THETOTOLATE) CON TI (TF MOD); Gette (1) 199t



Frid) [IV7ch II, Del 3.8] TI (+ F. G); jetro + J (+ Jetolkte) () en I + (+ Jet splitte & c mourid tigt (+ FOR); telle]) W- pilot aby TTIL CLAR PJP

tell $\Delta = \{0, \langle F_{\delta}^{*} \rangle \}$ yeldte s e (topt) movid > son up to tot $\sum_{\sigma i} o i o h | telt \}$ 2n q - pillot obj3.8] (+ Tmis), sen ib (+ Tmis), sen ib (+ The product-) (+ The

-10.00 A (ii) the state the other tot 11-2×10 tot 1 LGP 2 t: -; * +; -; *

all madent ambeddier & mon-neal'd gl. Frid

THTOTOLIF Which THTORE pe.ty 「ひてんず、ア. (iii) 2 h, m Je Tosell NF- 4 1,m.) 1,m.) 1,m.) 1,m.) 1,m.) 1,m. 1 ly-nd YM - Lito ILGP IPP

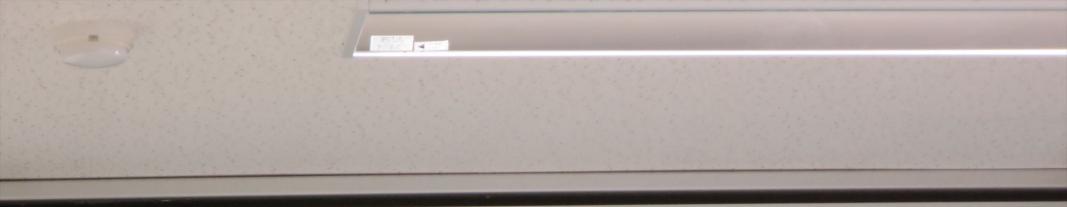
2° (* 7NO) = 11 L 1 Mo MANO 2. lognal. MR dogue af inv. under a multiple by an elt c (TIM u.S) d (Moduct formula) 2° (A7NO) 2° (A7NO) ii) the other the other

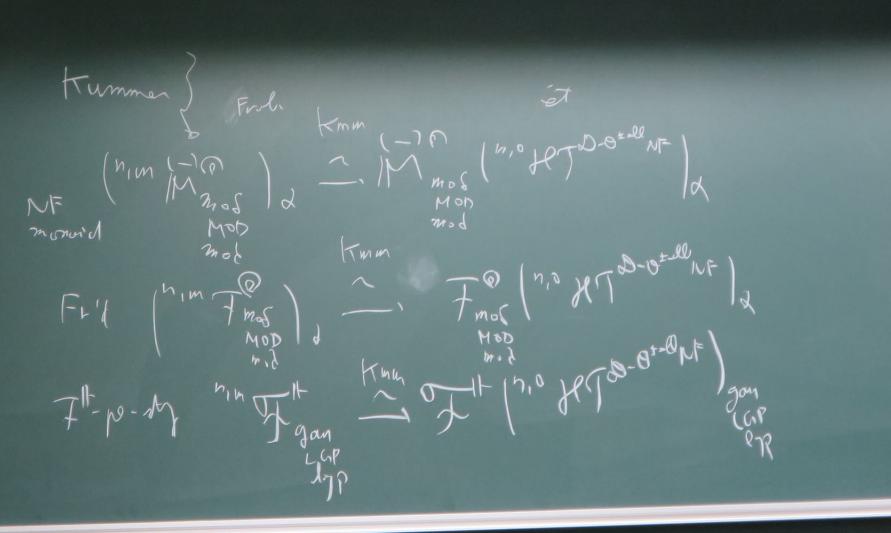
 $|\leq los(A\overline{7}n)|$ the the (i) (nev), comic gl. LGP Fids & assoc, K. ight by an elt a (TIM ...s) a $\frac{\gamma^{(+,1)}}{\gamma^{(+,1)}}$ et - lute 0-0+ dl NF-N, 0 JET 0-0+ dl NF-Kotaljan) I (1 Fril de ACJ 74-12 ment. (critic

-

LCIP - Gaumin leg - Hoda little

7----

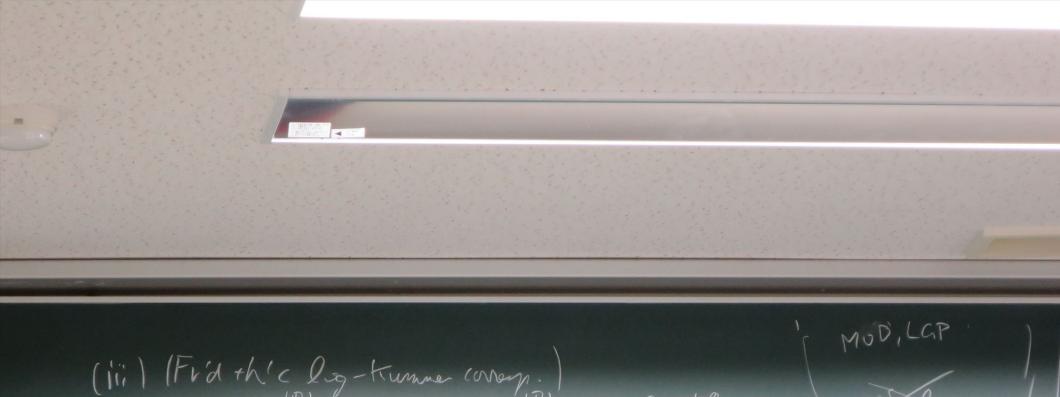




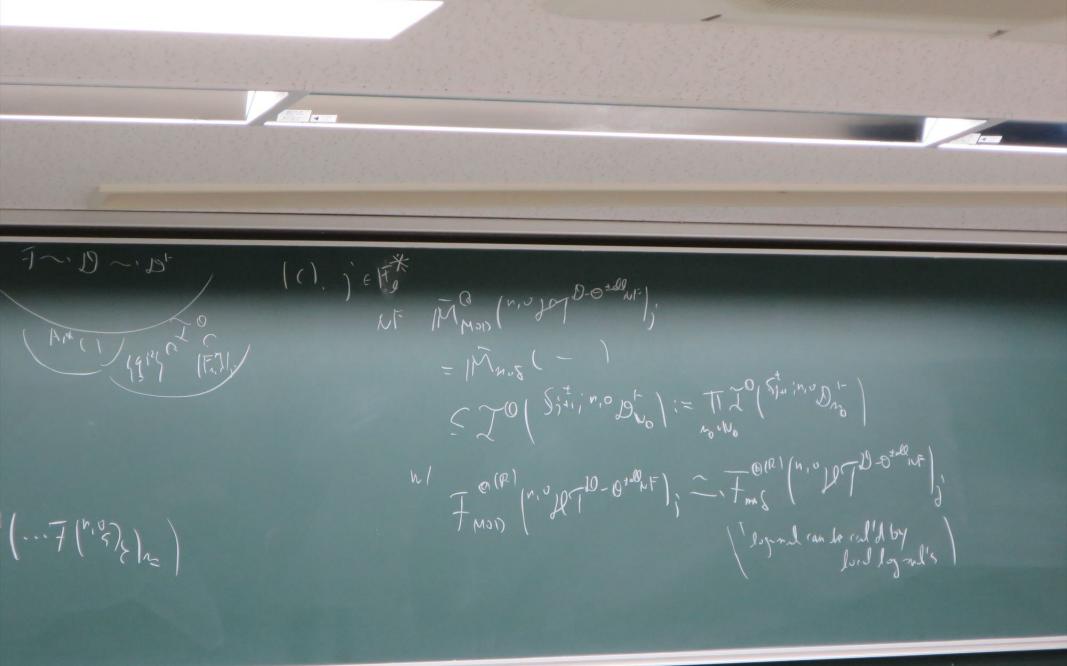
min

$$(i) (non-interference on pool of the gen) (ii) (non-interference on pool of the gen) (iii) (iii) (non-interference on pool of the gen) (iii) (iii$$

 $F_{\text{rod}} \wedge T = M$ $S_{min} = \begin{pmatrix} h, m \\ M \end{pmatrix} \begin{pmatrix} 0 \\ M \end{pmatrix} \end{pmatrix} d$ $\leq TT T \begin{pmatrix} 0 \\ A & 7_2 \end{pmatrix} \end{pmatrix} d$ $\leq TT T \begin{pmatrix} 0 \\ A & 7_2 \end{pmatrix} \end{pmatrix} d$ $\leq TT T \begin{pmatrix} 0 \\ A & 7_2 \end{pmatrix} \end{pmatrix} d$ $\int \int C \int C \begin{pmatrix} S_{1}^{*} & T \\ M \end{pmatrix} \int (A & 7_2) \end{pmatrix} d$ $\int \int C \int C \int S_{1}^{*} & T \begin{pmatrix} n, 0 \\ S_{1}^{*} & T \end{pmatrix} \int M \end{pmatrix} d$ matually compite. log-trummer corragendary (med) j shift inc. totality of these actions



(h), What is monoid yeldting monoid FLAP (" " LET D-Other /2 Wachim TI ZO (Stinizinos) $\mathcal{I}^{0}(\mathcal{A}_{2}^{\mathsf{L}}) \xrightarrow{\sim} \mathcal{I}^{0}(\mathcal{A}_{2}^{\mathsf{L}}) \xrightarrow{\sim} \mathcal{I}^{0}(\mathcal{A}_{2}^{\mathsf{L}}) \xrightarrow{\sim} \mathcal{I}^{\mathsf{L}}(\mathcal{A}_{2}^{\mathsf{L}}) \xrightarrow{\sim} \mathcal{I}^{\mathsf{L}})$ Isonet - alut



m, usp (GP; the above data 1a), (h), (c) indet. IPi CiPz ; $(\operatorname{Index}^{n})$ $\operatorname{Prc}(n, \circ s)_{\overline{1}}^{+}$ $(- u_{\overline{1}} t_{\overline{2}} autom)$ nigh rden-poen JO(5)+, ,, ,, Dro up to Isomet in each prices ! by .

(ii) (leg- Hummer Conorp.) El

-* red (mig

data (a), (b), (C) up to the fallowing indet. JO(S)+, in, ODNO

2+1 1 Isomet in early wear 1 by.

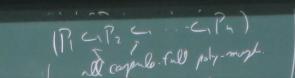
(Pi CiPz Ci CiPi) De cappulo full poly-most. mugh rden-prozening my 1 if 1..., h4 C. h1..., mh n/ capsule - full puls P3. C. Q(1))

permitation symm. Gale picture

fotalgin ho RGP Adogu permitidion symmetod Stale pricture h, oRLAP 2, por LAP (1005) (100) (10 nt

(ii)
$$(l_{og} - twmmen (over,))$$
 int $T_{us}(n, T_{og}) = T_{us}(n, T_{og}) + T_{us}(n, T_{us}) + T_{us}($

M, USP : the above data (a), (h), (c) the fallow is indet.



We consider the above danta (a) up to the fulling indet. (Indet 1) 'm EZ, isom ral is upper somi- cupat. (iii) (What - like computability) trammers in (ii) have the follow properties w.r. t. Olap-like (a). Kimm in (ii) For your, nim of the of the (","); of, to. The (","); The

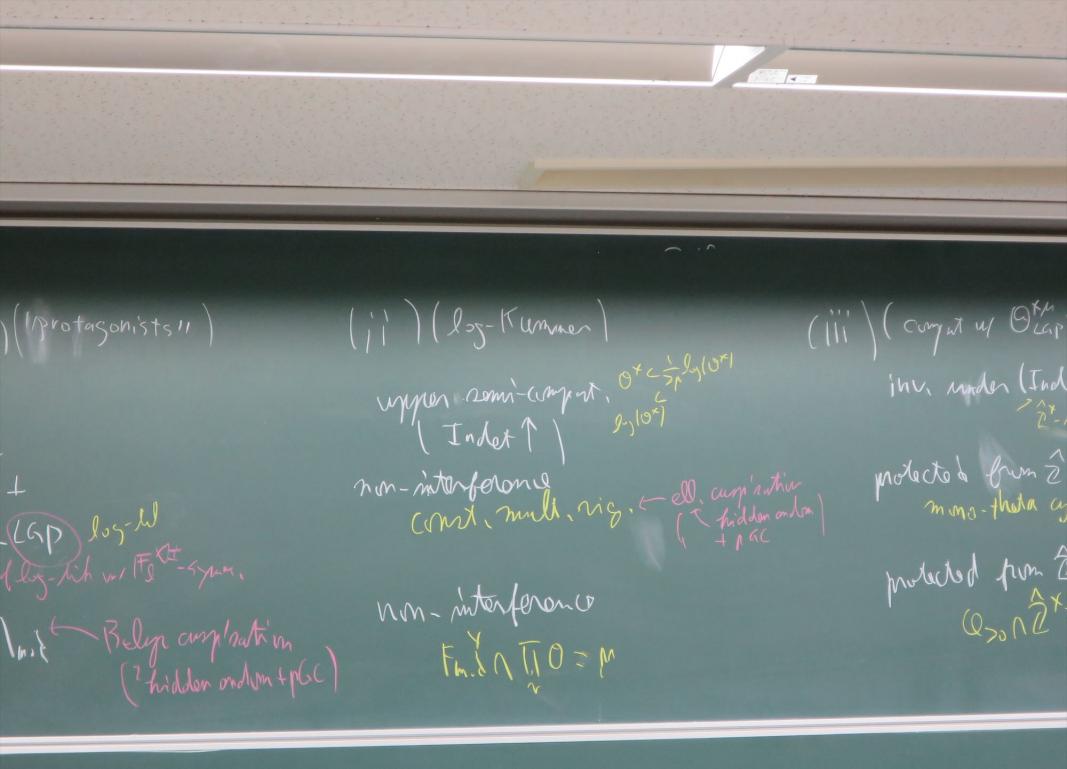
sig index. n, m T + YM ~ n+1, m of tym (b). It he styp Weight (him of the full internet of the full of the f Digp-lik r (*, °5) +) -) ~ 7 + × r pe. Ty nim JAY D-ienu + FX

m+1, m of a (b), FI-pe stype "month of It (", os),) in TEXA Linting TXA $\begin{array}{c} \begin{array}{c} n_{1}n_{1} \mathcal{T}_{4} \mathcal{T}_{$ $\frac{1}{f_{\Delta}} \left(\begin{array}{c} \mu_{1} \nu_{1} \\ \lambda \end{array} \right)^{L} \left(\begin{array}{c} \mu_{1} \nu_{1} \\ \lambda \end{array} \right)^{L} \left(\begin{array}{c} \mu_{1} \nu_{1} \\ \mu_{2} \end{array} \right)^{L} \left(\begin{array}{c} \mu_{1} \nu_{2} \\ \mu_{2} \end{array} \right)^{L} \left(\begin{array}{c} \mu_{1} \mu_{2} \end{array} \right)^{L} \left(\begin{array}{c} \mu_{1} \mu_{2} \\ \mu_{2} \end{array} \right)^{L} \left(\begin{array}{c} \mu_{1} \mu_{2} \end{array} \right)^{L} \left(\begin{array}{c} \mu_{1} \mu_{2} \end{array} \right)^{L} \left(\begin{array}{c} \mu_{1} \mu_{2} \end{array} \right)^{L} \left(\begin{array}{c} \mu_{2} \end{array} \right)^{L} \left(\begin{array}{c} \mu_{1}$

1 St. Mic. Symm. in, usR bod ~ n+1, usR-had 25 Fand (+5), (+5), // = 10012 - 0 Fon (+5), // The Ferre (TS), 1/2 n, motter and not texperilient 6-14 . W.W. Tum in (iil 70 -XM

Summary of Th3, 11 upper somi-c [Indet] unity portion ~, ~ non-interferon The LGP log-hil comput of log-hil wir IFS the symm. A Fat Mal. 7P non-interfe B F Must Bely composition (2 hidden order +pGC) NF Fm. Ent

D-19telly - had



0.1

G wir Sylum.

(III) (comput up Oku - ch) = Fort conjunctions étale pristing) up to (Inder) inv. moder (Index -) Z-indet to harabars for horal, molecte & from 2 - indet (striden) m.m.o. thata cy. l. rig, (+ striden) motocled prom 2x-inder. Q>02x=414 A-man "g+h" symmetry (Moury)

 $\left(\Lambda \right)$

- 1903 (91 CR +00 TO (From Star 2 Fn A (ul, 1pt, mbest # 0), <u>Lolomophic hull</u> (A The smallest mbret of 2°(...) of the form the por $-|l_{j}(1)| \in \mathbb{R}$ -lh XQXJ proc. normalized 143.1 Summary of

- 1203 (91 CR 4004 [] UTULI , (a. 3, 12] ["("7~") ("7~") moc.normdisid (hal hall of the union of log-not (the possible image of G-pollat obj. rol. to Kummer isom in the multipood, reg in of Th 3.11 u/ Indet (T) (-) () mappic hull of A the smallest mbret of I (...) of the form - 1 log (2) | e R proc. normalized (-the rin-ye - (- q- pilot day) proc. normalized (-the rin-ye - (- q- pilot day) nel + to Kummen ism in the multimed, nopph of Th 3.111 of Th 3.111 without Inder (()(-)(5)) X Q & Fre

143.11 nay 1 (ii)) (log-Kummer) , ((/protagonists //)

(III) Comput

123 (@1 CR (+~~4 [] UTULI , (a. 3, 12])e'di sundicided that hall of the union of j-not the possible image of G-polatoly; rol. to Kummen isom in the multimod. Kummen isom in the multimod. Nop in of Th 3.11 N/ Indet (T) (-) (D) "0" ≤ -(ht) + (Indet) JUTIAN (ht) < (1411/1g-24(+ lignar)) $-|l_{j}(1)| \in \mathbb{R}$ proc. normalized (-the rin-ye - (- q- pilt day) nel. to Kummen ison in the multimed, repth of Th 3.11 Without Inder (()(-)(5))

(1)) (0) Kun

(III) (comput up Okap th

Fe-cnj. mynchros

inco

étale prot

up to (Inder

[] UTULI , (a3, 12] $-|\mathcal{Q}_{\mathcal{I}}(\underline{\mathcal{I}})| \leq -|\mathcal{Q}_{\mathcal{I}}(\underline{\mathcal{P}})|$

"0" = - (ht) + (Indet) TUTATE (ht) < (H4) [Ag-M(+ hgrand

m, m of It & X FLAP 1-20 pr1-7 e da 11 ()⁴ (.<u>1</u>/y(0-1) J. j(0')^C 12

S. | Reduction Stop in Goveral Arith, Germ. [nin. f Isg-diffx1 Z'artoch lis bill on X -12: X/0]-R 1,71

1

X) Dieff. (artier dir. $\chi \in \chi(F) \leq \chi(\overline{O})$ [min. field (def. $L_{sg} - dif(x^{fx}) := \frac{1}{[F;0]} deg_F(S_x) eR$ r_F (V(UF) $\int_{D_{T}} (md_{D}|x|) = \frac{1}{(F;0)} d_{D_{F}}(H^{P}_{x}) \in \mathbb{R}$ artoh. din. Aufferent F/Q Aufferent F/Q Kupperted in WIFI^{non} (re) (and enprised mon He - cm . nunchro Stal inu - + 11 AKA - Lh

1.

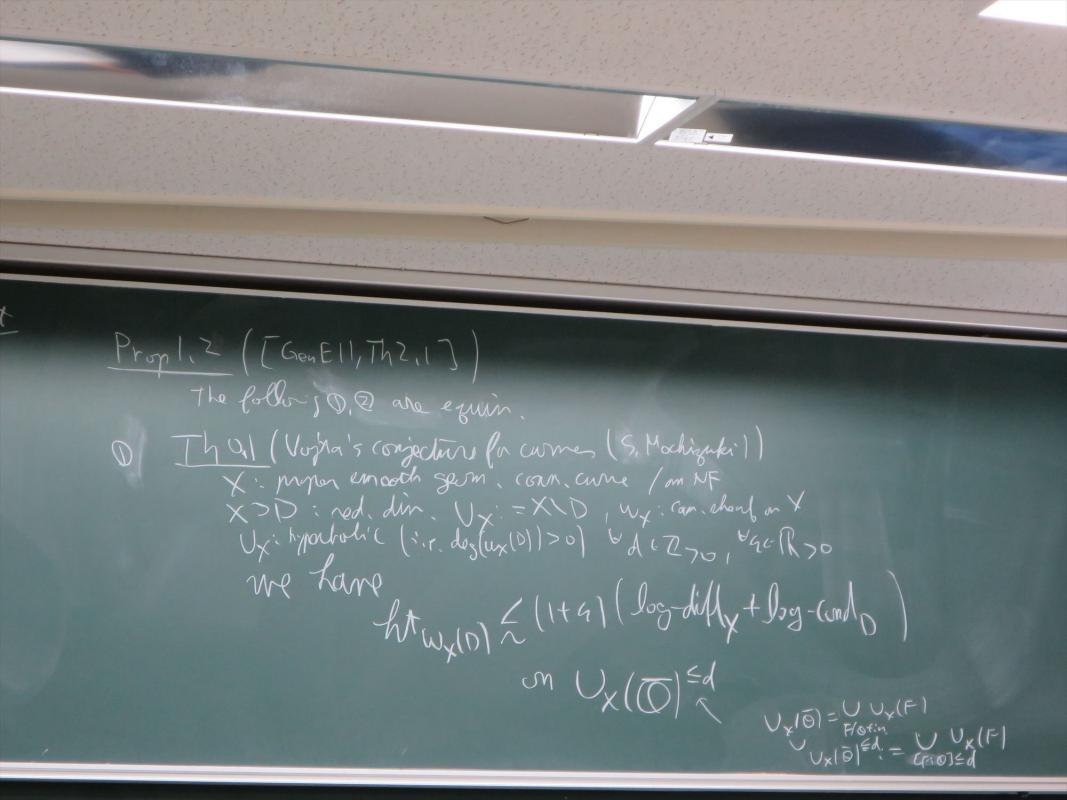
Dieff. (artier dir. fors d, R:XIQ)-R Eq) = Cicmstant 5.t. KIXI>BIXI+C (reg, d(x)>BIXI+C, |d(x)-BIXI+C, |d(x)-BIXI+C, $\overline{\int}_{J_{T}}^{T_{F}} \mathcal{E} X(U_{F})$ $\overline{\int}_{J_{T}}^{T_{F}} \mathcal{E} X(U_{F}) = \frac{1}{\overline{\int}_{F}^{T}} dg_{F} (\mathcal{F}_{x}) \mathcal{E} \mathcal{R}$ In VreX101 (rep)red og. class wint. 2' founded supported my Jass -A: FXIT and monthing

XVCX(0) + YKCX(0) + YKCX(0) + He not (rup. XII War V f. in subset > War Vallo, Vallon Vallo 72) $\phi \neq \mathcal{K}_{n} \subsetneq \mathcal{X}^{\text{enc}} \left(\phi \neq \mathcal{K}_{n} \subsetneqq \mathcal{X}(\overline{\mathbb{O}_{n}}) \right)$ a C. d C/RI-vrabb cpt disnoin) X, " (C. P. Q. 10. 1- Muble subst s.t. (KiQ.) Cos, X(K)n X. i ypt domain cpt entret of in the down Summary of Th3, 1

XV (X(Q) + compath bild ruber XV (X(Q)) + compath bild ruber X (X(Q)) + compath for nom never (N) + compath of CF:03 pts of Xmc (nep. X(Q)) + Kon dot d by X E Xn Propliz (EGenEll The follo jo Thul (Vupla X: proper X>D: n Ux: hypothe we he Xu~V, Xn t repport, Amain revision of top only be desured revision at in the desure of the states of the Id subst

5C tru

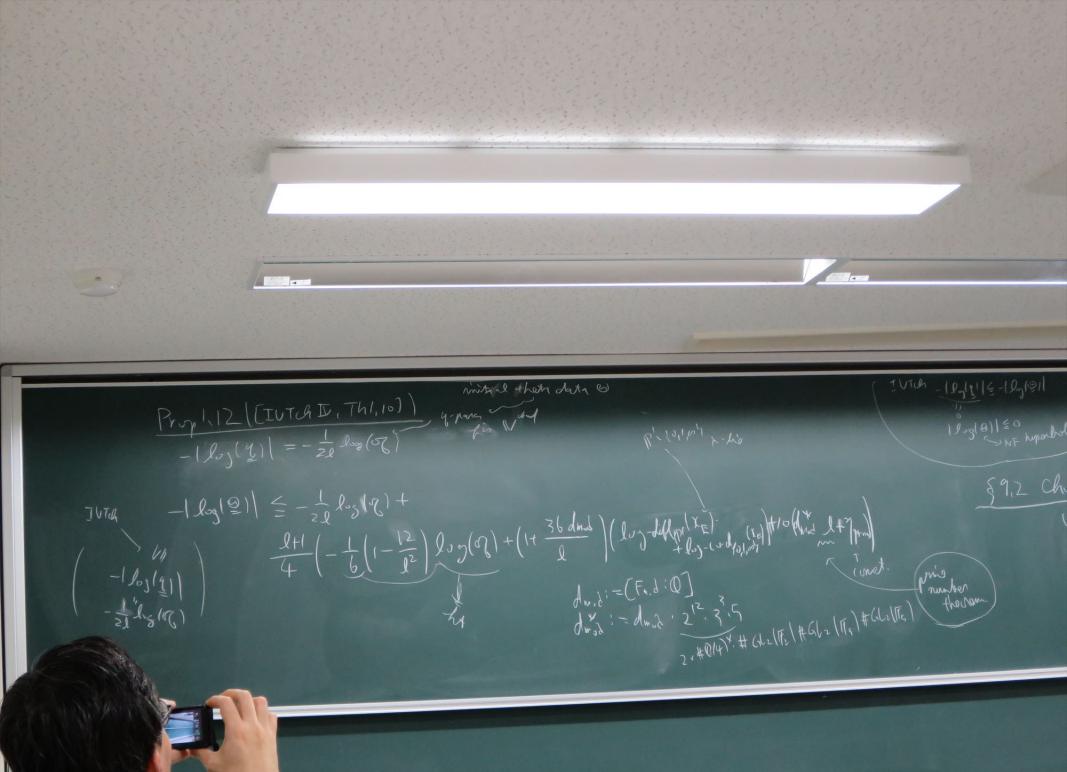
XV CX(0) + compattly bold subset XV CX(0) + compattly bold subset VCX(F) FROM He not of CF103 pts of Xmc (rep. X10,1 dot'd by X E Xm Propliz (EC The folk <u>Th</u> 9,1 ($f \in X(\overline{\mathbb{O}}_{n})$ Ky ~ V, Kn t ruppport, et sit. : upt domain : pt subset of top syme : pt subset of top syme : i the desure : i to initiation W

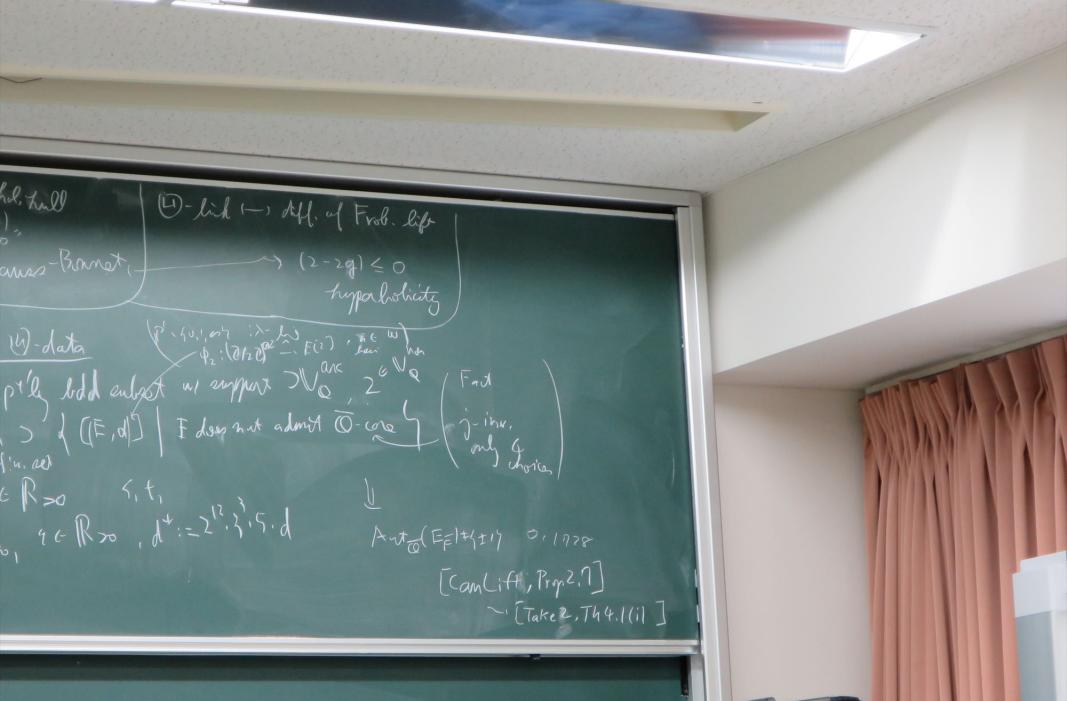


fix ()=) () m 2 Z: fim. net of prine $\bigcirc \in \bigcirc$ $\bigcup_{\mathbf{P}^{l}} := \mathbb{P}_{a}^{l} \setminus \{\mathbf{a}, \mathbf{a}, \mathbf{b}, \mathbf{b}, \mathbf{b}, \mathbf{b}, \mathbf{b}, \mathbf{a}, \mathbf{b}, \mathbf{$ Kuc Upillo) : a spily bidd subst whose support >2 HAE 270, HEERSO $ht_{wplio,1,on} \leq (1+\epsilon) \left[l_{oj} - diffpi + l_{oj} - cond find) \right]$ on $K_V \cap V_{pi} \left[\overline{O} \right] \leq d$

()=) () yeard ing log- diff behavior of Q ∈ Q non-vit, Boly nap [Belyi] & cononign [] mit (mit $\frac{\text{Lom I.3}\left([IVTAID, Pry 1, 2(i1)]\right)}{\frac{1}{2}}$ $\frac{\text{Lom I.3}\left([IVTAID, Pry 1, 2(i1)]\right)}{\frac{1}{2}}$ $\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\right] \frac{1}{2}\left[\frac{$ +ly-(~d 11,10)

og-diff behavior of oronize [] If p>2, e=p-2 $= 1 p^{\alpha} O_{R} = log_{\mu} (O_{R}) = p^{-R} O_{R}$ ann. i day of $k \left(q \right)$ $k := \left(\frac{1}{2} \right)$ unit $\left(\frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right)$ k = 2 k = 2 $p^{\alpha}O_{k} \leq log_{p}(O_{k}^{\times}) \leq p^{-L}O_{k}$





= fin subst Exclass CUPI (0) = 5, 4. & htup (10,1,001 (n) Exixd. 27A Find: fild of module of EF:= FFF $F_{pd} = F_{m,d} (E_{F_{m,d}}(z)) < F$ Assume full pts of $E_{F}(3.5)$ not, F=) EF, Frod and an part of milling (G-Juna

RID [TUTCH I, THI, 10]

mitial thet data &

h:= WXCKd := A me mill enlarge in the prod. $\chi = [(E_F, A)] \in Up((FInK \setminus E_{X, K, d}))$ $\chi = [(E_F, A)] \in Up((FInK \setminus E_{X, K, d}))$ $\chi = [u_{2} | u_{2} | v_{1} \land \chi \land (\chi - 103))$ $\chi = [u_{2} | u_{2} | v_{1} \land (\chi - 103))$ $(hebythen's 0 - 1 d) = [u_{2} | v_{2} \land (\chi - 103)]$ $(hebythen's 0 - 1 d) = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{2} \land (\chi - 103)]$ $(hebythen's 0 - 1 d) = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{2} \land (\chi - 103)]$ $(hebythen's 0 - 1 d) = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{2} \land (\chi - 103)]$ $\chi = [u_{2} | v_{3} \land (\chi - 103)]$ $\chi = [u_{3} | v_{3} \land (\chi - 103)]$ 5) nut, /F EFtpal3,5] part M

mitial theth data &

IVTUR - [ly1] 1 - [ly1]

$$K_{k} = K(E_{F}) = J_{2}(A_{k}^{T}) = \frac{M}{(F \otimes 2)} \frac{M}$$

p

(Sprm 25, 1pm 70=) - (225) $2d^{+}h^{-2}l_{s}(2d^{+}h) \ge 2\overline{LF}(0)h^{-2}l_{s}(2\overline{LF}(0)h)$ (52) ZZ2h-Zlug (2hmtalog (ra) hatalog (ra) $\geq \sum_{h=1}^{n+1} h^{-\frac{1}{2}} \int_{y} (h_{n}) h_{1} \geq \sum_{h=1}^{n+1} h_{n} \geq h_{$ (53) $A^*h^2 \ge (F;Q)h^2 = \sum_{n=1}^{\infty} h^{-2}h_n f_n \log|p_n| \ge \sum_{n=1}^{\infty} h^{-2}h_n \log|p_n|$ 2 5 h-2 ha log(pa) 2 5 log(pa) rinju ta 2 hz

A C Prine, (\$2) phinto for some nelV(F)non =) $(5'i) \sum_{\mu:(\xi_1)} \log |\mu| = \mathcal{O}(h^{\frac{1}{2}}) \le \frac{4}{3}h^{\frac{1}{2}} (hy 2nd \le \mathcal{O}(50)) \& h^{\frac{1}{2}} \le \frac{5}{7}\mu_n (\varepsilon(51))$ $(5^{(2)}) \sum_{\substack{p:(p2)\\nu^{*}(p3)}} l_{og}(p) \leq \sum_{\substack{h_n \geq h^{2}\\h_n \geq h^{2}}} l_{og}(h_n) \leq 2d^{*}h^{\frac{1}{2}} l_{og}(2d^{*}h) by (s2)$ $(5^{(2)}) \sum_{\substack{nu^{*}(p3)\\nu^{*}(p3)}} \sum_{\substack{p:(p3)\\p:(p3)}} l_{og}(p) \leq d^{*}h^{\frac{1}{2}} b_{\gamma}(s3)$

$$= \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(23 \right) \right) \right) \\ A \end{array}\right) \\ = \left(\begin{array}{c} \left(\begin{array}{c} \left(2 \right) \right)^{\frac{1}{2}} + \left(1 \right)^{\frac{1}{2}} + 2 \left(1 \right)^{\frac{1}{2}} + 2 \left(1 \right)^{\frac{1}{2}} \right) \\ \left(\begin{array}{c} \left(2 \right)^{\frac{1}{2}} + \left(1 \right)^{\frac{1}{2}} + 2 \left(1 \right)^{\frac{1}{2}} + 2 \left(1 \right)^{\frac{1}{2}} \right) \\ \left(\begin{array}{c} \left(2 \right)^{\frac{1}{2}} + \left(1 \right)^{\frac{1}{2}} + 2 \left(1 \right)^{\frac{1}{2}} \\ \left(\begin{array}{c} \left(1 \right)^{\frac{1}{2}} + 1 \right)^{\frac{1}{2}} + 2 \left(1 \right)^{\frac{1}{2}} + 2 \left$$

LEA = (PI) (upper bound of e) l nut nat, (SI) 1 < 2 (N) + (Epum) ((S123) log(2d*h (22d*h = 2d*h = 2d*h = (log x = x) (PZ) (monodrony non-vanishing module) logizd*hl=zd*h=zd lthn for neW(Floor s.t. hn+v N l not not. (SZ) (P3) (upper bound of mono drong at l) It l= pr for pome r (W(F)^{hon} =) hr L h² Linut put (S3) $\frac{1}{2} \left(\frac{2}{2} n d \right) \leq \frac{4}{3} \sqrt{2} d d$

$$(1) = \frac{1}{1+1}$$

, me may assume Mains SLZ(FR)

I wad to 1-Sylow algps GL2 (IFO)

l-Sylow salyp of Glz (FOIS=D+1 $(PD) = \mathcal{F}, \overline{P}, 9$ $N_{GL_2(\mathbb{F}_0)}(\varsigma) = \left\{ \left(\begin{array}{c} * \\ \circ \\ \ast \end{array} \right) \right\}$ =) [-] = a matrix inut thiangular =) n1;= # {l-Sylon in '-14>1 MHE (m, 10) = MH = 211 (EICHHEDHI) $\rightarrow V_{+}, N_{-} = \begin{pmatrix} r_{0} \\ r_{1} \end{pmatrix} \in H$ $SL_2(|F_2) = G = \langle N_+, N_- \rangle$

(Pb)

App'

4 (PD) SCK, J. J. S. S. t. (PD) SCK, J. J. S. S. t. (FIF/Xi-1, 9, SK, W. N. Mod. 2) is an initial Q-174 Ileg(2) :_I+ | Ц (inut Aviangalan -Sylon in 1-14>1 =) MH = Itl (EICHHEDHI) Iltich $(P_{6}) = (P_{6}) = (P_{2}) = (P_{$ ([',] EH , := (N+,N-)

$$(A) \frac{d}{d} \int_{C} \int_{C$$

$$S_{2}(2)^{2} = (0, 0^{2})^{2} + (1 + 3^{2})^{2$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& \forall d_{mod} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& d_{md} < d_{md}^{*} \leq d^{*}$$

$$(F2) \& \& d_{md} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& d_{md} < d_{md}^{*} \leq d^{*}$$

$$(F1) \& \& d_{md} < d_{md}^{*} \in d^{*}$$

$$(F2) \& \& d_{md} < d_{md}^{*} \in d^{*}$$

$$(F1) \& \& d_{md} < d_{md}^{*} \in d^{*}$$

$$(F2) \& \& d_{md} < d_{md}^{*} \in d^{*}$$

$$(F1) \& \& d_{md}^{*} \in d^{*}$$

$$(F1) \& \& d_{md} < d_{m$$

Jf q_E > min {1, 2 } =1 4 4 ; hold (6 (Eps)) =) enlarge $\forall X_{K,d}$ by an $\forall X_{K,d}$, $\forall Y_{M,d}$ me may assume $\xi_E \leq \min\{1, \xi\}$ $\frac{1}{5}h \leq (1 - \frac{2}{5}\xi_E) \left((1 + \frac{1}{5}\xi_E) (l_0) (S^{\text{Frad}}) + l_y (f^{\text{Frad}}) \right)$ $-\frac{1}{6}h \leq (1-\frac{2}{5})$ $+ \left(1 - \frac{2}{5} \frac{4}{5}\right) \frac{2}{5} \left(\frac{1}{5}\right) + \left(\frac{1}{$ 435 drh-2 4 6 174 F

th = -h, 12 | = (1+0 h 1 1 x 3 10 1 + 1 x 10 1 + 2 x < (1+ d*h-2) (log(S Frpd) + log (F Frpd) + = + = + = 160d* = 2 log(2d*4) + ; < K (2:=407prm +2 BK 15542 $\begin{aligned} \mathcal{E}_{E} &:= |60d^{k}|^{2}h^{-2} \log(2d^{k}h) \quad (25d^{k}h^{-\frac{1}{2}}) \\ \sim (E_{PS}) \quad \mathcal{E}_{E} &\leq 4 |60d^{k}|^{2}h^{-\frac{1}{2}} \log(2(d^{k})^{\frac{1}{2}}h^{\frac{1}{2}}h^{\frac{1}{2}}) \\ \sim (E_{PS}) \quad \mathcal{E}_{E} &\leq 4 |60d^{k}|^{2}h^{-\frac{1}{2}} \log(2(d^{k})^{\frac{1}{2}}h^{\frac{1}$ 200 × 152

 $\frac{1}{5}\log(\eta^{\flat}) \approx ht_{\psi_{pr}}(10,1,\infty)$ -> Prop. OK

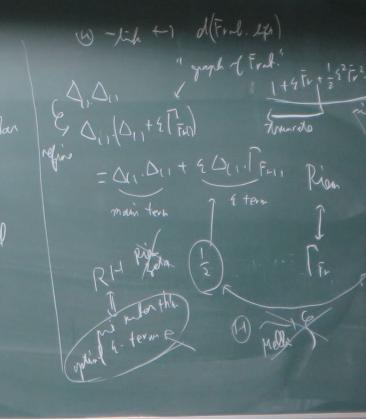
S = logatil + logar Riomann? ht & S + * 8 = 9-1 (51 m K

Frob. pricture - Etale picture -itati (undi anti, cundi polar cond.

Etale picturo Tj'[log] F. . ant. word. polar cond.

 $\frac{1}{2} \int (u) = \frac{p^2}{2\mu} (..)$ $\frac{1}{2} \int (u) = \frac{p^2}{2\mu} (..)$ $\frac{1}{2} \int (1) \int (1) = \frac{p^2}{2\mu} (..)$ $\frac{1}{2} \int (1) \int$

Joy-chell



p Service Strand Synchol Strand RI-1 Printa (12) I miles the Min-terme (1) Min-terme Alley O 1]